Welcome back to our blog series, “Learn Deep Learning with NumPy”! In Part
4.2, we implemented convolutional layers with conv2d()
, enabling spatial
feature extraction from MNIST images using filters. Now, in Part 4.3, we’ll
build on this foundation by introducing pooling layers and combining them with
convolutions and dense layers to construct a simple Convolutional Neural
Network (CNN). This architecture will be more efficient and effective for image
classification than fully connected MLPs.
By the end of this post, you’ll understand the role of pooling in reducing
spatial dimensions, implement max_pool()
for 2x2 max pooling, and build a
basic CNN with one convolutional layer (8 filters, 3x3), one max pooling layer,
and one dense layer to classify MNIST digits. We’ll reuse conv2d()
and other
toolkit functions, completing a full CNN structure. Let’s dive into the math and
code for pooling and CNN architecture!
Convolutional layers, as seen in Part 4.2, extract local features like edges or textures by applying filters across an image. However, the resulting feature maps retain high spatial dimensions, leading to computational overhead and risk of overfitting due to excessive detail. Pooling layers address this by downsampling feature maps, reducing their size while preserving important information. This makes the network more efficient and helps it generalize better by focusing on dominant features.
A typical CNN architecture combines:
In deep learning, this structure is powerful because:
In this post, we’ll implement max pooling and build a simple CNN for MNIST with one convolutional layer (8 filters, 3x3), one max pooling layer (2x2), and one dense layer for classification. Let’s explore the math behind pooling and CNNs.
Max pooling is a downsampling technique that slides a window (e.g., 2x2) over the input feature map and outputs the maximum value in each region. For an input feature map of shape and a pooling window of size (e.g., 2x2) with stride , the output at position is:
Where:
Max pooling retains the strongest activations (e.g., brightest edges) in each region, reducing spatial dimensions while preserving dominant features.
A simple CNN for MNIST might include:
This structure reduces parameters compared to MLPs and leverages spatial locality, making it ideal for images. Now, let’s implement max pooling and build a simple CNN in NumPy.
We’ll create a max_pool()
function for 2x2 max pooling and build a simple CNN
architecture with one convolutional layer (using conv2d()
from Part 4.2), one
max pooling layer, and one dense layer for MNIST classification. We’ll focus on
forward propagation for now, with full training to follow in later posts.
Here’s the implementation of max_pool()
for 2D max pooling with a specified
window size and stride:
import numpy as np
from numpy.typing import NDArray
from typing import Union
def max_pool(X: NDArray[np.floating], size: int = 2, stride: int = 2) -> NDArray[np.floating]:
"""
Perform 2D max pooling on an input feature map.
Args:
X: Input feature map, shape (height, width) or (height, width, channels)
size: Size of the pooling window (default: 2 for 2x2 pooling)
stride: Stride of the pooling operation (default: 2)
Returns:
Output after max pooling, shape depends on input, size, and stride
"""
if len(X.shape) == 2:
height, width = X.shape
channels = 1
X = X.reshape(height, width, 1)
else:
height, width, channels = X.shape
out_height = (height - size) // stride + 1
out_width = (width - size) // stride + 1
output = np.zeros((out_height, out_width, channels))
for i in range(out_height):
for j in range(out_width):
x_start = i * stride
x_end = x_start + size
y_start = j * stride
y_end = y_start + size
region = X[x_start:x_end, y_start:y_end, :]
output[i, j, :] = np.max(region, axis=(0, 1))
if channels == 1:
output = output[:, :, 0]
return output
Let’s build a simple CNN with one convolutional layer (8 filters, 3x3), one max pooling layer (2x2, stride=2), and one dense layer for MNIST classification. We’ll apply it to a small batch of images, focusing on forward propagation (full training with backpropagation will be covered in a later post).
Note: Ensure you have sklearn
(pip install scikit-learn
) for loading
MNIST and matplotlib
(pip install matplotlib
) for visualization. We’ll use a
small batch for CPU efficiency.
import numpy as np
from numpy.typing import NDArray
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_openml
from neural_network import conv2d, softmax, normalize
# Load MNIST data (small batch for simplicity)
print("Loading MNIST data...")
X_full, y_full = fetch_openml('mnist_784', version=1, return_X_y=True, as_frame=False)
X_full = X_full.astype(float)
y_full = y_full.astype(int)
# Use a small batch of 4 images
batch_size = 4
X_batch = X_full[:batch_size].reshape(batch_size, 28, 28) # Shape (4, 28, 28)
labels = y_full[:batch_size]
# Define 8 filters of size 3x3 (random for demo)
n_filters = 8
filters = [np.random.randn(3, 3) * 0.1 for _ in range(n_filters)]
# Step 1: Convolutional Layer
feature_maps = np.zeros((batch_size, 26, 26, n_filters)) # Output shape after 3x3 valid conv
for i in range(batch_size):
for f in range(n_filters):
feature_maps[i, :, :, f] = conv2d(X_batch[i], filters[f], stride=1)
# Step 2: Max Pooling Layer (2x2, stride=2)
pooled_maps = np.zeros((batch_size, 13, 13, n_filters)) # Output shape after 2x2 pooling
for i in range(batch_size):
for f in range(n_filters):
pooled_maps[i, :, :, f] = max_pool(feature_maps[i, :, :, f], size=2, stride=2)
# Step 3: Flatten and Dense Layer (for demo, random weights)
n_flattened = 13 * 13 * n_filters # 13x13x8 = 2197
flattened = pooled_maps.reshape(batch_size, n_flattened)
W_dense = np.random.randn(n_flattened, 10) * 0.01 # 10 classes for MNIST
b_dense = np.zeros((1, 10))
logits = flattened @ W_dense + b_dense
probs = softmax(logits)
# Visualize one input image and one feature map after pooling
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 5))
ax1.imshow(X_batch[0], cmap='gray')
ax1.set_title(f"Input Image (Digit: {labels[0]})")
ax1.axis('off')
ax2.imshow(pooled_maps[0, :, :, 0], cmap='gray')
ax2.set_title("Pooled Feature Map (Filter 1)")
ax2.axis('off')
plt.tight_layout()
plt.show()
print("Input Batch Shape:", X_batch.shape)
print("Feature Maps Shape (after conv):", feature_maps.shape)
print("Pooled Maps Shape (after pooling):", pooled_maps.shape)
print("Flattened Shape:", flattened.shape)
print("Output Probabilities Shape:", probs.shape)
print("Output Probabilities (first sample, first few classes):\n", probs[0, :3])
Output (approximate, shapes are exact):
Loading MNIST data...
Input Batch Shape: (4, 28, 28)
Feature Maps Shape (after conv): (4, 26, 26, 8)
Pooled Maps Shape (after pooling): (4, 13, 13, 8)
Flattened Shape: (4, 2197)
Output Probabilities Shape: (4, 10)
Output Probabilities (first sample, first few classes):
[0.099 0.101 0.098]
Visualization: (Two matplotlib
plots will display: the first input MNIST
digit image and the corresponding pooled feature map from the first filter after
2x2 max pooling. The pooled map shows reduced spatial dimensions while retaining
strong activations.)
In this example, we process a batch of 4 MNIST images (28x28) through a simple CNN: a convolutional layer with 8 filters (3x3) produces feature maps (26x26x8), max pooling (2x2, stride=2) reduces them to (13x13x8), and a dense layer maps the flattened output (2197 features) to 10 class probabilities. This demonstrates the CNN structure, though parameters are random (not trained). Training time remains minimal for this small batch.
Let’s update our neural_network.py
file to include the max_pool()
function
alongside our previous implementations. This function will be a key component
for building full CNNs in future posts.
# neural_network.py
import numpy as np
from numpy.typing import NDArray
from typing import Union, Callable, Tuple, List, Dict
from scipy import signal
def normalize(X: NDArray[np.floating]) -> NDArray[np.floating]:
"""
Normalize the input array X by subtracting the mean and dividing by the standard deviation.
Parameters:
X (NDArray[np.floating]): Input array to normalize. Should be a numerical array
(float or compatible type).
Returns:
NDArray[np.floating]: Normalized array with mean approximately 0 and standard
deviation approximately 1 along each axis.
"""
mean = np.mean(X, axis=0)
std = np.std(X, axis=0)
normalized_X = X - mean # Start with mean subtraction
mask = std != 0 # Create a mask for non-zero std
if np.any(mask):
normalized_X[:, mask] = normalized_X[:, mask] / std[mask]
return normalized_X
def matrix_multiply(X: NDArray[np.floating], W: NDArray[np.floating]) -> NDArray[np.floating]:
"""
Perform matrix multiplication between two arrays.
Args:
X: First input array/matrix of shape (m, n) with floating-point values
W: Second input array/matrix of shape (n, p) with floating-point values
Returns:
Result of matrix multiplication, shape (m, p) with floating-point values
"""
return np.matmul(X, W)
def sigmoid(Z: NDArray[np.floating]) -> NDArray[np.floating]:
"""
Compute the sigmoid activation function element-wise.
Args:
Z: Input array of any shape with floating-point values
Returns:
Array of the same shape with sigmoid applied element-wise, values in [0, 1]
"""
return 1 / (1 + np.exp(-Z))
def relu(Z: NDArray[np.floating]) -> NDArray[np.floating]:
"""
Compute the ReLU activation function element-wise.
Args:
Z: Input array of any shape with floating-point values
Returns:
Array of the same shape with ReLU applied element-wise, max(0, Z)
"""
return np.maximum(0, Z)
def softmax(Z: NDArray[np.floating]) -> NDArray[np.floating]:
"""
Compute the softmax activation function row-wise.
Args:
Z: Input array of shape (n_samples, n_classes) with floating-point values
Returns:
Array of the same shape with softmax applied row-wise, probabilities summing to 1 per row
"""
Z_max = np.max(Z, axis=1, keepdims=True)
exp_Z = np.exp(Z - Z_max)
sum_exp_Z = np.sum(exp_Z, axis=1, keepdims=True)
return exp_Z / sum_exp_Z
def mse_loss(y_pred: NDArray[np.floating], y: NDArray[np.floating]) -> float:
"""
Compute the Mean Squared Error loss between predicted and true values.
Args:
y_pred: Predicted values, array of shape (n,) or (n,1) with floating-point values
y: True values, array of shape (n,) or (n,1) with floating-point values
Returns:
Mean squared error as a single float
"""
return np.mean((y_pred - y) ** 2)
def binary_cross_entropy(A: NDArray[np.floating], y: NDArray[np.floating]) -> float:
"""
Compute the Binary Cross-Entropy loss between predicted probabilities and true labels.
Args:
A: Predicted probabilities (after sigmoid), array of shape (n,) or (n,1), values in [0, 1]
y: True binary labels, array of shape (n,) or (n,1), values in {0, 1}
Returns:
Binary cross-entropy loss as a single float
"""
epsilon = 1e-15
return -np.mean(y * np.log(A + epsilon) + (1 - y) * np.log(1 - A + epsilon))
def cross_entropy(A: NDArray[np.floating], y: NDArray[np.floating]) -> float:
"""
Compute categorical cross-entropy loss for multi-class classification.
Args:
A: Predicted probabilities after softmax, shape (n_samples, n_classes)
y: True labels, one-hot encoded, shape (n_samples, n_classes)
Returns:
Cross-entropy loss as a single float
"""
epsilon = 1e-15 # Small value to prevent log(0)
return -np.mean(np.sum(y * np.log(A + epsilon), axis=1))
def gradient_descent(X: NDArray[np.floating], y: NDArray[np.floating], W: NDArray[np.floating],
b: NDArray[np.floating], lr: float, num_epochs: int, batch_size: int,
loss_fn: Callable[[NDArray[np.floating], NDArray[np.floating]], float],
activation_fn: Callable[[NDArray[np.floating]], NDArray[np.floating]] = lambda x: x) -> Tuple[NDArray[np.floating], NDArray[np.floating], List[float]]:
"""
Perform mini-batch gradient descent to minimize loss.
Args:
X: Input data, shape (n_samples, n_features)
y: True values, shape (n_samples, 1)
W: Initial weights, shape (n_features, 1)
b: Initial bias, shape (1,) or (1,1)
lr: Learning rate, step size for updates
num_epochs: Number of full passes through the dataset
batch_size: Size of each mini-batch
loss_fn: Loss function to compute error, e.g., mse_loss or binary_cross_entropy
activation_fn: Activation function to apply to linear output (default: identity)
Returns:
Tuple of (updated W, updated b, list of loss values over epochs)
"""
n_samples = X.shape[0]
loss_history = []
for epoch in range(num_epochs):
indices = np.random.permutation(n_samples)
X_shuffled = X[indices]
y_shuffled = y[indices]
for start_idx in range(0, n_samples, batch_size):
end_idx = min(start_idx + batch_size, n_samples)
X_batch = X_shuffled[start_idx:end_idx]
y_batch = y_shuffled[start_idx:end_idx]
batch_size_actual = X_batch.shape[0]
Z_batch = X_batch @ W + b
y_pred_batch = activation_fn(Z_batch)
error = y_pred_batch - y_batch
grad_W = (X_batch.T @ error) / batch_size_actual
grad_b = np.mean(error)
W = W - lr * grad_W
b = b - lr * grad_b
y_pred_full = activation_fn(X @ W + b)
loss = loss_fn(y_pred_full, y)
loss_history.append(loss)
print(f"Epoch {epoch+1}/{num_epochs}, Loss: {loss:.4f}")
return W, b, loss_history
def numerical_gradient(X: NDArray[np.floating], y: NDArray[np.floating], params: Dict[str, NDArray[np.floating]],
loss_fn: Callable[[NDArray[np.floating], NDArray[np.floating]], float],
forward_fn: Callable[[NDArray[np.floating], Dict[str, NDArray[np.floating]]], NDArray[np.floating]],
h: float = 1e-4) -> Dict[str, NDArray[np.floating]]:
"""
Compute numerical gradients for parameters using central difference approximation.
Args:
X: Input data, shape (n_samples, n_features)
y: True values, shape (n_samples, 1)
params: Dictionary of parameters (e.g., {'W': ..., 'b': ...})
loss_fn: Loss function to compute error, e.g., mse_loss
forward_fn: Function to compute predictions from X and params
h: Step size for finite difference approximation (default: 1e-4)
Returns:
Dictionary of numerical gradients for each parameter
"""
num_grads = {}
for param_name, param_value in params.items():
num_grad = np.zeros_like(param_value)
it = np.nditer(param_value, flags=['multi_index'])
while not it.finished:
idx = it.multi_index
original_value = param_value[idx]
param_value[idx] = original_value + h
y_pred_plus = forward_fn(X, params)
loss_plus = loss_fn(y_pred_plus, y)
param_value[idx] = original_value - h
y_pred_minus = forward_fn(X, params)
loss_minus = loss_fn(y_pred_minus, y)
num_grad[idx] = (loss_plus - loss_minus) / (2 * h)
param_value[idx] = original_value
it.iternext()
num_grads[param_name] = num_grad
return num_grads
def forward_perceptron(X: NDArray[np.floating], W: NDArray[np.floating], b: NDArray[np.floating]) -> NDArray[np.floating]:
"""
Compute the forward pass of a single-layer perceptron.
Args:
X: Input data, shape (n_samples, n_features)
W: Weights, shape (n_features, 1)
b: Bias, shape (1, 1) or (1,)
Returns:
Output after sigmoid activation, shape (n_samples, 1)
"""
Z = X @ W + b # Linear combination
A = sigmoid(Z) # Sigmoid activation
return A
def forward_mlp(X: NDArray[np.floating], W1: NDArray[np.floating], b1: NDArray[np.floating],
W2: NDArray[np.floating], b2: NDArray[np.floating]) -> Tuple[NDArray[np.floating], NDArray[np.floating]]:
"""
Compute the forward pass of a 2-layer MLP.
Args:
X: Input data, shape (n_samples, n_features, e.g., 784 for MNIST)
W1: Weights for first layer, shape (n_features, n_hidden, e.g., 784x256)
b1: Bias for first layer, shape (1, n_hidden)
W2: Weights for second layer, shape (n_hidden, n_classes, e.g., 256x10)
b2: Bias for second layer, shape (1, n_classes)
Returns:
Tuple of (A1, A2):
- A1: Hidden layer output after ReLU, shape (n_samples, n_hidden)
- A2: Output layer output after softmax, shape (n_samples, n_classes)
"""
Z1 = X @ W1 + b1 # First layer linear combination
A1 = relu(Z1) # ReLU activation for hidden layer
Z2 = A1 @ W2 + b2 # Second layer linear combination
A2 = softmax(Z2) # Softmax activation for output layer
return A1, A2
def backward_mlp(X: NDArray[np.floating], A1: NDArray[np.floating], A2: NDArray[np.floating],
y: NDArray[np.floating], W1: NDArray[np.floating], W2: NDArray[np.floating],
Z1: NDArray[np.floating]) -> Tuple[NDArray[np.floating], NDArray[np.floating], NDArray[np.floating], NDArray[np.floating]]:
"""
Compute gradients for a 2-layer MLP using backpropagation.
Args:
X: Input data, shape (n_samples, n_features)
A1: Hidden layer output after ReLU, shape (n_samples, n_hidden)
A2: Output layer output after softmax, shape (n_samples, n_classes)
y: True labels, one-hot encoded, shape (n_samples, n_classes)
W1: Weights for first layer, shape (n_features, n_hidden)
W2: Weights for second layer, shape (n_hidden, n_classes)
Z1: Pre-activation values for hidden layer, shape (n_samples, n_hidden)
Returns:
Tuple of gradients (grad_W1, grad_b1, grad_W2, grad_b2)
"""
n = X.shape[0]
# Output layer error (delta2)
delta2 = A2 - y # Shape (n_samples, n_classes)
# Gradients for output layer (W2, b2)
grad_W2 = (A1.T @ delta2) / n # Shape (n_hidden, n_classes)
grad_b2 = np.mean(delta2, axis=0, keepdims=True) # Shape (1, n_classes)
# Hidden layer error (delta1)
delta1 = (delta2 @ W2.T) * (Z1 > 0) # ReLU derivative: 1 if Z1 > 0, 0 otherwise
# Shape (n_samples, n_hidden)
# Gradients for hidden layer (W1, b1)
grad_W1 = (X.T @ delta1) / n # Shape (n_features, n_hidden)
grad_b1 = np.mean(delta1, axis=0, keepdims=True) # Shape (1, n_hidden)
return grad_W1, grad_b1, grad_W2, grad_b2
def forward_mlp_3layer(X: NDArray[np.floating], W1: NDArray[np.floating], b1: NDArray[np.floating],
W2: NDArray[np.floating], b2: NDArray[np.floating],
W3: NDArray[np.floating], b3: NDArray[np.floating]) -> Tuple[NDArray[np.floating], NDArray[np.floating], NDArray[np.floating]]:
"""
Compute the forward pass of a 3-layer MLP.
Args:
X: Input data, shape (n_samples, n_features, e.g., 784 for MNIST)
W1: Weights for first layer, shape (n_features, n_hidden1, e.g., 784x256)
b1: Bias for first layer, shape (1, n_hidden1)
W2: Weights for second layer, shape (n_hidden1, n_hidden2, e.g., 256x128)
b2: Bias for second layer, shape (1, n_hidden2)
W3: Weights for third layer, shape (n_hidden2, n_classes, e.g., 128x10)
b3: Bias for third layer, shape (1, n_classes)
Returns:
Tuple of (A1, A2, A3):
- A1: First hidden layer output after ReLU, shape (n_samples, n_hidden1)
- A2: Second hidden layer output after ReLU, shape (n_samples, n_hidden2)
- A3: Output layer output after softmax, shape (n_samples, n_classes)
"""
Z1 = X @ W1 + b1
A1 = relu(Z1)
Z2 = A1 @ W2 + b2
A2 = relu(Z2)
Z3 = A2 @ W3 + b3
A3 = softmax(Z3)
return A1, A2, A3
def backward_mlp_3layer(X: NDArray[np.floating], A1: NDArray[np.floating], A2: NDArray[np.floating],
A3: NDArray[np.floating], y: NDArray[np.floating],
W1: NDArray[np.floating], W2: NDArray[np.floating], W3: NDArray[np.floating],
Z1: NDArray[np.floating], Z2: NDArray[np.floating]) -> Tuple[NDArray[np.floating], NDArray[np.floating], NDArray[np.floating], NDArray[np.floating], NDArray[np.floating], NDArray[np.floating]]:
"""
Compute gradients for a 3-layer MLP using backpropagation.
Args:
X: Input data, shape (n_samples, n_features)
A1: First hidden layer output after ReLU, shape (n_samples, n_hidden1)
A2: Second hidden layer output after ReLU, shape (n_samples, n_hidden2)
A3: Output layer output after softmax, shape (n_samples, n_classes)
y: True labels, one-hot encoded, shape (n_samples, n_classes)
W1: Weights for first layer, shape (n_features, n_hidden1)
W2: Weights for second layer, shape (n_hidden1, n_hidden2)
W3: Weights for third layer, shape (n_hidden2, n_classes)
Z1: Pre-activation values for first hidden layer, shape (n_samples, n_hidden1)
Z2: Pre-activation values for second hidden layer, shape (n_samples, n_hidden2)
Returns:
Tuple of gradients (grad_W1, grad_b1, grad_W2, grad_b2, grad_W3, grad_b3)
"""
n = X.shape[0]
# Output layer error (delta3)
delta3 = A3 - y # Shape (n_samples, n_classes)
# Gradients for output layer (W3, b3)
grad_W3 = (A2.T @ delta3) / n # Shape (n_hidden2, n_classes)
grad_b3 = np.mean(delta3, axis=0, keepdims=True) # Shape (1, n_classes)
# Second hidden layer error (delta2)
delta2 = (delta3 @ W3.T) * (Z2 > 0) # ReLU derivative: 1 if Z2 > 0, 0 otherwise
# Shape (n_samples, n_hidden2)
# Gradients for second hidden layer (W2, b2)
grad_W2 = (A1.T @ delta2) / n # Shape (n_hidden1, n_hidden2)
grad_b2 = np.mean(delta2, axis=0, keepdims=True) # Shape (1, n_hidden2)
# First hidden layer error (delta1)
delta1 = (delta2 @ W2.T) * (Z1 > 0) # ReLU derivative: 1 if Z1 > 0, 0 otherwise
# Shape (n_samples, n_hidden1)
# Gradients for first hidden layer (W1, b1)
grad_W1 = (X.T @ delta1) / n # Shape (n_features, n_hidden1)
grad_b1 = np.mean(delta1, axis=0, keepdims=True) # Shape (1, n_hidden1)
return grad_W1, grad_b1, grad_W2, grad_b2, grad_W3, grad_b3
def conv2d(image: NDArray[np.floating], filter_kernel: NDArray[np.floating], stride: int = 1) -> NDArray[np.floating]:
"""
Perform 2D convolution on an image using a filter kernel.
Args:
image: Input image, shape (height, width)
filter_kernel: Convolution filter, shape (filter_height, filter_width)
stride: Stride of the convolution operation (default: 1)
Returns:
Output feature map after convolution, shape depends on input, filter size, and stride
"""
output = signal.convolve2d(image, filter_kernel, mode='valid', boundary='fill', fillvalue=0)
if stride > 1:
output = output[::stride, ::stride]
return output
def max_pool(X: NDArray[np.floating], size: int = 2, stride: int = 2) -> NDArray[np.floating]:
"""
Perform 2D max pooling on an input feature map.
Args:
X: Input feature map, shape (height, width) or (height, width, channels)
size: Size of the pooling window (default: 2 for 2x2 pooling)
stride: Stride of the pooling operation (default: 2)
Returns:
Output after max pooling, shape depends on input, size, and stride
"""
if len(X.shape) == 2:
height, width = X.shape
channels = 1
X = X.reshape(height, width, 1)
else:
height, width, channels = X.shape
out_height = (height - size) // stride + 1
out_width = (width - size) // stride + 1
output = np.zeros((out_height, out_width, channels))
for i in range(out_height):
for j in range(out_width):
x_start = i * stride
x_end = x_start + size
y_start = j * stride
y_end = y_start + size
region = X[x_start:x_end, y_start:y_end, :]
output[i, j, :] = np.max(region, axis=(0, 1))
if channels == 1:
output = output[:, :, 0]
return output
You can now import this new function using
from neural_network import max_pool
. Combined with conv2d()
, it forms a
critical part of building Convolutional Neural Networks (CNNs) for image
processing tasks.
To reinforce your understanding of pooling layers and CNN architecture, try these Python-focused coding exercises. They’ll help you build intuition for downsampling with max pooling and constructing a complete CNN pipeline. Run the code and compare outputs to verify your solutions.
Max Pooling on Synthetic Feature Map
Create a synthetic feature map
X = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]])
(4x4). Apply max_pool()
with size=2
and stride=2
. Print the input and
output feature maps. Verify that the output size is (2x2) and contains the
maximum values from each 2x2 region.
# Your code here
X = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]])
pooled = max_pool(X, size=2, stride=2)
print("Input Feature Map (4x4):\n", X)
print("Output after Max Pooling (2x2):\n", pooled)
print("Output Shape:", pooled.shape)
Effect of Stride on Max Pooling Output
Using the same feature map from Exercise 1, apply max_pool()
with size=2
but stride=1
. Print the input and output feature maps. Verify that the
output size is larger than with stride=2
and note how overlapping windows
affect the result.
# Your code here
X = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]])
pooled = max_pool(X, size=2, stride=1)
print("Input Feature Map (4x4):\n", X)
print("Output after Max Pooling (stride=1):\n", pooled)
print("Output Shape:", pooled.shape)
Convolution and Pooling on MNIST Image
Load a single MNIST image using
fetch_openml('mnist_784', version=1, return_X_y=True, as_frame=False)
.
Reshape it to 28x28. Apply conv2d()
with a 3x3 edge detection filter
np.array([[-1, -1, -1], [0, 0, 0], [1, 1, 1]])
, then apply max_pool()
with size=2
and stride=2
. Visualize the input image, convolved feature
map, and pooled feature map using matplotlib
. Observe the size reduction
and feature retention.
# Your code here
from sklearn.datasets import fetch_openml
import matplotlib.pyplot as plt
X_full, y_full = fetch_openml('mnist_784', version=1, return_X_y=True, as_frame=False)
X_full = X_full.astype(float)
image = X_full[0].reshape(28, 28)
label = y_full[0]
filter_kernel = np.array([[-1, -1, -1], [0, 0, 0], [1, 1, 1]])
conv_map = conv2d(image, filter_kernel, stride=1)
pooled_map = max_pool(conv_map, size=2, stride=2)
fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(15, 5))
ax1.imshow(image, cmap='gray')
ax1.set_title(f"Input Image (Digit: {label})")
ax1.axis('off')
ax2.imshow(conv_map, cmap='gray')
ax2.set_title("Convolved Feature Map")
ax2.axis('off')
ax3.imshow(pooled_map, cmap='gray')
ax3.set_title("Pooled Feature Map")
ax3.axis('off')
plt.tight_layout()
plt.show()
print("Input Image Shape:", image.shape)
print("Convolved Map Shape:", conv_map.shape)
print("Pooled Map Shape:", pooled_map.shape)
CNN Forward Pass on Small Batch with Multiple Filters
Load a batch of 2 MNIST images, reshape to (2, 28, 28). Define 4 random 3x3
filters. Apply conv2d()
to each image with each filter (resulting in shape
(2, 26, 26, 4)), then apply max_pool()
with size=2
, stride=2
(resulting
in shape (2, 13, 13, 4)). Flatten to (2, 13134) and pass through a dense
layer with random weights to 10 classes. Print shapes at each step to verify
the CNN forward pass.
# Your code here
from sklearn.datasets import fetch_openml
X_full, y_full = fetch_openml('mnist_784', version=1, return_X_y=True, as_frame=False)
X_full = X_full.astype(float)
batch_size = 2
X_batch = X_full[:batch_size].reshape(batch_size, 28, 28)
labels = y_full[:batch_size]
n_filters = 4
filters = [np.random.randn(3, 3) * 0.1 for _ in range(n_filters)]
feature_maps = np.zeros((batch_size, 26, 26, n_filters))
for i in range(batch_size):
for f in range(n_filters):
feature_maps[i, :, :, f] = conv2d(X_batch[i], filters[f], stride=1)
pooled_maps = np.zeros((batch_size, 13, 13, n_filters))
for i in range(batch_size):
for f in range(n_filters):
pooled_maps[i, :, :, f] = max_pool(feature_maps[i, :, :, f], size=2, stride=2)
n_flattened = 13 * 13 * n_filters
flattened = pooled_maps.reshape(batch_size, n_flattened)
W_dense = np.random.randn(n_flattened, 10) * 0.01
b_dense = np.zeros((1, 10))
logits = flattened @ W_dense + b_dense
probs = softmax(logits)
print("Input Batch Shape:", X_batch.shape)
print("Feature Maps Shape (after conv):", feature_maps.shape)
print("Pooled Maps Shape (after pooling):", pooled_maps.shape)
print("Flattened Shape:", flattened.shape)
print("Output Probabilities Shape:", probs.shape)
These exercises will help you build intuition for how pooling layers downsample feature maps, how they integrate with convolutional layers in a CNN pipeline, and their impact on spatial dimensions and feature retention.
Congratulations on implementing max pooling and constructing a simple CNN
architecture! In this post, we’ve explored the mathematics of max pooling, built
max_pool()
for 2x2 downsampling, and combined it with conv2d()
and a dense
layer to form a basic CNN for MNIST. This architecture leverages spatial
hierarchies, making it more efficient and effective for image data than MLPs.
In the next chapter (Part 4.4: Training CNNs with Backpropagation), we’ll implement backpropagation for CNNs, including gradients for convolutional and pooling layers, and train our simple CNN on MNIST to achieve high accuracy, completing our foundational deep learning journey.
Until then, experiment with the code and exercises above. If you have questions or want to share your solutions, drop a comment below—I’m excited to hear from you. Let’s keep building our deep learning toolkit together!
Next Up: Part 4.4 – Training CNNs with Backpropagation